赵帅,刘译阳,刘思腾,陈星枝,袁梦晨,尤亚茹,黄陈翠,高剑波.CT影像组学列线图预测胃癌内镜活检与术后病理学分型差异[J].中国介入影像与治疗学,2024,21(6):343-348
CT影像组学列线图预测胃癌内镜活检与术后病理学分型差异
Nomogram based on CT radiomics for predicting pathological types of gastric cancer: Difference between endoscopic biopsy and postoperative pathology
投稿时间:2024-03-15  修订日期:2024-04-15
DOI:10.13929/j.issn.1672-8475.2024.06.007
中文关键词:  胃肿瘤  体层摄影术  X线计算机  病理学  影像组学
英文关键词:stomach neoplasms  tomography  X-ray computed  pathology  radiomics
基金项目:国家自然科学基金项目(81971615)。
作者单位E-mail
赵帅 郑州大学第一附属医院放射科, 河南 郑州 450052  
刘译阳 郑州大学第一附属医院放射科, 河南 郑州 450052  
刘思腾 郑州大学第一附属医院放射科, 河南 郑州 450052  
陈星枝 北京深睿博联科技有限责任公司研发中心科研合作部, 北京 100089  
袁梦晨 郑州大学第一附属医院放射科, 河南 郑州 450052  
尤亚茹 郑州大学第一附属医院放射科, 河南 郑州 450052  
黄陈翠 北京深睿博联科技有限责任公司研发中心科研合作部, 北京 100089  
高剑波 郑州大学第一附属医院放射科, 河南 郑州 450052 cjr.gaojianbo@vip.163.com 
摘要点击次数: 116
全文下载次数: 112
中文摘要:
      目的 评估基于CT影像组学的列线图预测胃癌内镜活检与术后病理Lauren分型差异的价值。方法 回顾性分析126例经手术病理确诊的胃癌患者,根据内镜活检与术后病理结果是否一致将其分为一致组(n=77)与不一致组(n=49),同时按2∶1比例分为训练集与验证集。筛选临床预测因子,构建临床预测模型;于静脉期CT图像提取影像组学特征,采用L1正则化方法对特征进行筛选,以决策树、随机森林、逻辑回归3种机器学习(ML)算法构建影像组学模型;基于临床及最佳影像组学ML模型构建列线图;评估各模型及列线图的预测效能及其临床价值。结果 患者年龄、血小板计数、动脉期CT值是预测胃癌内镜活检与术后病理分型不一致的独立因子。3种ML模型中,随机森林预测效能较好,其在训练集与验证集中的曲线下面积(AUC)分别为0.835及0.724。临床模型、影像组学模型及列线图在训练集的AUC分别为0.764、0.835及0.884,在验证集分别为0.760、0.724及0.841;列线图在训练集与验证集均显示出较好的拟合度及临床实用性。结论 基于CT影像组学列线图用于预测胃癌内镜活检与术后病理Lauren分型不一致性具有潜在临床应用价值。
英文摘要:
      Objective To observe the value of CT radiomics-based nomogram for predicting difference of Lauren types of gastric cancers between endoscopic biopsy and postoperative pathology. Methods Totally 126 patients with gastric cancer diagnosed by surgical pathology were retrospectively analyzed. The patients were divided into concordant group (n=77) and inconsistent group (n=49) according to the concordance between endoscopic biopsy and postoperative pathology results or not, also divided into training set and validation set at the ratio of 2∶1. Clinical predictors were screened, then a clinical prediction model was constructed. Radiomics features were extracted based on venous-phase CT images and screened using L1 regularization. Radiomics models were constructed using 3 machine learning (ML) algorithms, i.e. decision trees, random forests and logistic regression. The nomogram based on clinical and the best ML radiomics model was constructed, and the efficacy and clinical utility of the above models and nomogram for predicting inconsistency of Lauren types of gastric cancers between endoscopic biopsy and postoperative pathology were evaluated. Results Patients’ age, platelet count, and arterial-phase CT values of tumors were all independent predictors of inconsistency between endoscopic biopsy and postoperative pathology of Lauren types of gastric cancer. CT radiomics model using random forests algorithm showed better predictive efficacy among 3 ML models,with the area under the curve (AUC) of 0.835 in training set and 0.724 in validation set, respectively. The AUC of clinical model, radiomics model and the nomogram in training set was 0.764, 0.835 and 0.884, while was 0.760, 0.724 and 0.841 in validation set, respectively. In both training set and validation set, the nomogram showed a good fit and considerable clinical utility. Conclusion CT radiomics-based nomogram had potential clinical application value for predicting inconsistency of Lauren types of gastric cancers between endoscopic biopsy and postoperative pathology.
查看全文  查看/发表评论  下载PDF阅读器
关闭